๐ผ Pandas Concepts with Demo Programs
This post covers essential Pandas concepts every data enthusiast should know — from creating DataFrames to filtering, grouping, and merging data. Each example includes syntax highlighting and a handy copy button!
1️⃣ Importing Pandas & Creating DataFrame
import pandas as pd
# Create a simple DataFrame
data = {
'Name': ['Alice', 'Bob', 'Charlie', 'David'],
'Age': [25, 30, 35, 40],
'City': ['Chennai', 'Bangalore', 'Delhi', 'Mumbai']
}
df = pd.DataFrame(data)
print(df)
df.to_csv('data.csv',index=False) # for next ex2️⃣ Reading Data from CSV
# Read CSV file
df = pd.read_csv('data.csv')
# Display first 5 rows
print(df.head())
3️⃣ Data Selection — iloc & loc
# Select by row and column index
print(df.iloc[0, 1])
# Select by label
print(df.loc[0, 'Name'])
4️⃣ Filtering Rows
# Filter rows where Age > 30
filtered = df[df['Age'] > 30]
print(filtered)
5️⃣ GroupBy and Aggregations
# Group by City and get average Age
grouped = df.groupby('City')['Age'].mean()
print(grouped)
6️⃣ Sorting & Renaming Columns
# Sort by Age descending
df_sorted = df.sort_values(by='Age', ascending=False)
print(df_sorted)
# Rename column
df_renamed = df.rename(columns={'City': 'Location'})
print(df_renamed)
7️⃣ Handling Missing Data
# Fill missing values
df.fillna({'Age': df['Age'].mean()}, inplace=True)
# Drop rows with NaN
df.dropna(inplace=True)
8️⃣ Merging & Joining DataFrames
# Merge two DataFrames on 'Name'
df1 = pd.DataFrame({'Name': ['Alice', 'Bob'], 'Score': [85, 90]})
df2 = pd.DataFrame({'Name': ['Bob', 'Charlie'], 'Rank': [2, 3]})
merged = pd.merge(df1, df2, on='Name', how='outer')
print(merged)
9️⃣ Pivot Tables
# Create a pivot table
pivot = pd.pivot_table(df, values='Age', index='City', aggfunc='mean')
print(pivot)
๐ Exporting Data
# Export DataFrame to CSV
df.to_csv('output.csv', index=False)
print("✅ Data exported successfully!")
๐ก Tip: Pandas + NumPy + Matplotlib = a powerful combo for Data Science beginners!
Please also refer Cook Book
No comments:
Post a Comment