This blog covers essential NumPy concepts with simple code examples. Each demo has syntax highlighting and a copy button — perfect for learning or sharing!
1. Importing NumPy
import numpy as np
2. Creating Arrays
# From list
a = np.array([1, 2, 3])
print(a)
# From tuple
b = np.array((4, 5, 6))
print(b)
3. Array Dimensions
a = np.array([[1, 2], [3, 4]])
print(a.ndim) # 2
print(a.shape) # (2,2)
print(a.size) # 4
4. Array Data Types
a = np.array([1, 2, 3], dtype=np.float64)
print(a.dtype)
5. Array Indexing
a = np.array([10, 20, 30, 40, 50])
print(a[1]) # 20
print(a[-1]) # 50
6. Slicing Arrays
print(a[1:4]) # [20 30 40]
print(a[:3]) # [10 20 30]
print(a[::2]) # [10 30 50]
7. Array Operations
b = np.array([4, 5, 6])
print(a + b) # [14 25 36]
print(a * b) # [40 100 180]
print(np.dot(a, b)) # Dot product
8. Universal Functions (ufuncs)
a = np.array([1, 4, 9])
print(np.sqrt(a)) # [1. 2. 3.]
print(np.exp(a)) # e^a
9. Reshaping Arrays
a = np.array([1, 2, 3, 4, 5, 6])
b = a.reshape((2, 3))
print(b)
10. Stacking Arrays
a = np.array([1, 2])
b = np.array([3, 4])
c = np.vstack((a, b))
print(c)
11. Splitting Arrays
a = np.array([1, 2, 3, 4, 5, 6])
b, c = np.hsplit(a, 2)
print(b)
print(c)
12. Random Numbers
a = np.random.rand(3, 2)
print(a)
13. Array Broadcasting
a = np.array([1, 2, 3])
b = np.array([1])
print(a + b) # [2 3 4]
14. Saving and Loading Arrays
a = np.array([1, 2, 3])
np.save('my_array.npy', a)
b = np.load('my_array.npy')
print(b)
No comments:
Post a Comment